

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 7
COURSE CODE: MMP701S	COURSE NAME: MATHEMATICAL METHODS IN PHYSICS
SESSION: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER				
EXAMINER(S)	Prof Dipti R Sahu			
MODERATOR:	Prof S. C. Ray			

	INSTRUCTIONS	
1.	Answer ALL the questions.	
2.	Write clearly and neatly.	
3.	Number the answers clearly.	

PERMISSIBLE MATERIALS

Non-programmable Calculators

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Ques	[25]					
1.1	A battery giving a constant voltage of $E(t) = 40V$ is connected in series to a resistor of resistar and an inductor of inductance 1H. If the initial current in the circuit, is $I(0) = 3A$.					
	1.1.1 Write the differential equation satisfying above condition	(2)				
	1.1.2 Solve the formulated differential equation and find the current after t seconds.	(8)				
1.2	Find the particular solution of $(\cos x - x \sin x + y^2) dx + 2xy dy = 0$ that satisfies the initial conditions $y = 1$ when $x = \pi$					
1.3	Solve (y^2-1) y' =4xy ² (5					
Ques	tion 2	[25]				
2.1	Solve $y'' - 4y = xe^x + Cos 2x$					
2.2	A spring with a mass of 2 kg has natural length 0.5 m. A force of 25.6 N is required to maintain					
	it stretched to a length of 0.7 m. If the spring is stretched to a length of 0.7 m and then released					
	with initial velocity zero					
	2.2.1. What is the value of spring constant	(2)				
	2.2.2. Formulate the differential equation and find the position of the mass at any time t.	(8)				
Ques	tion 3	[25]				
Ques 3.1	Given the system	[25]				
		[25]				
	Given the system	[25]				
	Given the system $x-2y+3z=3$	[25]				
3.1	Given the system x-2y+3z=3 4x + y - z = 2	[25]				
3.1.1.	Given the system $x-2y+3z=3$ $4x+y-z=2$ $2x+3y-5z=-1$					
3.1.1. 3.1.2.	Given the system $x-2y+3z=3$ $4x+y-z=2$ $2x+3y-5z=-1$ Identify the column vectors as V_1 , V_2 , V_3	(3)				
3.1.1. 3.1.2.	Given the system $x-2y+3z=3$ $4x+y-z=2$ $2x+3y-5z=-1$ Identify the column vectors as V_1 , V_2 , V_3 . Find the the superposition coefficients. Express column vectors as a superposition of the V's.	(3) (5)				
3.1.1. 3.1.2. 3.1.3	Given the system $x-2y+3z=3$ $4x+y-z=2$ $2x+3y-5z=-1$ Identify the column vectors as V_1 , V_2 , V_3 Find the the superposition coefficients.	(3) (5) (2)				
3.1.1. 3.1.2. 3.1.3	Given the system $x-2y+3z=3$ $4x+y-z=2$ $2x+3y-5z=-1$ Identify the column vectors as V_1, V_2, V_3 Find the the superposition coefficients. Express column vectors as a superposition of the V's. Find the eigenvectors of the matrix A given as $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$ Find the adjoint of matrix A	(3) (5) (2) (10)				
3.1.1. 3.1.2. 3.1.3	Given the system $x-2y+3z=3$ $4x+y-z=2$ $2x+3y-5z=-1$ Identify the column vectors as V_1, V_2, V_3 Find the the superposition coefficients. Express column vectors as a superposition of the V's. Find the eigenvectors of the matrix A given as $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$ Find the adjoint of matrix A	(3) (5) (2) (10)				
3.1.1. 3.1.2. 3.1.3	Given the system $x-2y+3z=3$ $4x+y-z=2$ $2x+3y-5z=-1$ Identify the column vectors as V_1, V_2, V_3 Find the the superposition coefficients. Express column vectors as a superposition of the V's. Find the eigenvectors of the matrix A given as $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$	(3) (5) (2) (10)				

Questi	ion 4	[25]
4.1	Verify that the functions $f_1(x) = 1$, $f_2(x) = \sin x$, and $f_3(x) = \cos x$ are orthogonal in $[-\pi, \pi]$, and use them to construct an orthonormal set of functions in $[-\pi, \pi]$	(10)
4.2	Determine the first three Hermite polynomials from the generating formula $H_n\left(y\right)=(-1)^ne^{+y^2}\frac{d^n}{dy^n}e^{-y^2}$	(5)
4.3	What is Gram-Schmidt Orthogonalization Process, explain it mathematically	(10)

.....END.....